pyrfm.linear_model.SparseMBRegressor¶
-
class
pyrfm.linear_model.
SparseMBRegressor
(n_components=1000, loss='squared', solver='cd', C=1.0, alpha=1.0, fit_intercept=True, max_iter=100, tol=1e-06, eps=0.0001, warm_start=False, random_state=None, verbose=True, shuffle=True)[source]¶ Bases:
pyrfm.linear_model.sparse_mb_predictor.BaseSparseMBEstimator
,pyrfm.linear_model.base.LinearRegressorMixin
Linear regression with feature map approximating the intersection (min) kernel by sparse explicit feature map, which was proposed by S.Maji and A.C.Berg. For more detail, see [1].
- Parameters
n_components (int (default=1000)) – Number of Monte Carlo samples per original features. Equals the dimensionality of the computed (mapped) feature space.
loss (str (default="squared")) –
Which loss function to use. Following losses can be used:
’squared’
C (double (default=1.0)) – Weight of loss term.
alpha (double (default=1.0)) – Weight of the penalty term.
fit_intercept (bool (default=True)) – Whether to fit intercept (bias term) or not.
max_iter (int (default=100)) – Maximum number of iterations.
tol (double (default=1e-6)) – Tolerance of stopping criterion. If sum of absolute val of update in one epoch is lower than tol, the AdaGrad solver stops learning.
eps (double (default=1e-2)) – A small double to ensure objective function convex.
warm_start (bool (default=False)) – Whether to activate warm-start or not.
random_state (int, RandomState instance or None, optional (default=None)) – If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
verbose (bool (default=True)) – Verbose mode or not.
shuffle (boole (default=True)) – Whether to shuffle the order of parameters for optimization or not.
-
self.
transformer
¶ The learned transformer for random feature maps.
- Type
scikit-learn TransformMixin object.
-
self.
coef_
¶ The learned coefficients of the linear model.
- Type
array, shape (n_components, )
-
self.
intercept_
¶ The learned intercept (bias) of the linear model.
- Type
array, shape (1, )
References
[1] Max-Margin Additive Classifiers for Detection Subhransu Maji, Alexander C. Berg. In ICCV 2009. (http://acberg.com/papers/mb09iccv.pdf)
-
LOSSES
= {'squared': <pyrfm.linear_model.loss_fast.Squared object>}¶
-
fit
(X, y)¶ Fit model according to X and y.
- Parameters
X (array-like, shape = [n_samples, n_features]) – Training vectors, where n_samples is the number of samples and n_features is the number of features.
y (array-like, shape = [n_samples]) – Target values.
- Returns
self – Returns self.
- Return type
classifier
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
predict
(X)¶ Perform regression on an array of test vectors X.
- Parameters
X (array-like, shape = [n_samples, n_features]) –
- Returns
Predicted target values for X
- Return type
array, shape = [n_samples]
-
score
(X, y, sample_weight=None)¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
- Parameters
X (array-like, shape = (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
y (array-like, shape = (n_samples) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like, shape = [n_samples], optional) – Sample weights.
- Returns
score – R^2 of self.predict(X) wrt. y.
- Return type
float
Notes
The R2 score used when calling
score
on a regressor will usemultioutput='uniform_average'
from version 0.23 to keep consistent with metrics.r2_score. This will influence thescore
method of all the multioutput regressors (except for multioutput.MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call metrics.r2_score directly or make a custom scorer with metrics.make_scorer (the built-in scorer'r2'
usesmultioutput='uniform_average'
).
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Returns
- Return type
self