Source code for pyrfm.random_feature.additivechi2sampler

from sklearn import kernel_approximation
[docs]class AdditiveChi2Sampler(kernel_approximation.AdditiveChi2Sampler): """A wrapper of sklearn.kernel_approximation.AdditiveChi2Sampler. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ A. Vedaldi and A. Zisserman. Pattern Analysis and Machine Intelligence, 2011. """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval
[docs] def fit(self, X, y=None): self.n_features = X.shape[1] self.n_components = X.shape[1] * (2*self.sample_steps - 1) return super(AdditiveChi2Sampler, self).fit(X, y)