pyrfm.random_feature.AdditiveChi2Sampler

class pyrfm.random_feature.AdditiveChi2Sampler(sample_steps=2, sample_interval=None)[source]

Bases: sklearn.kernel_approximation.AdditiveChi2Sampler

A wrapper of sklearn.kernel_approximation.AdditiveChi2Sampler.

Parameters
  • sample_steps (int, optional) – Gives the number of (complex) sampling points.

  • sample_interval (float, optional) – Sampling interval. Must be specified when sample_steps not in {1,2,3}.

References

See “Efficient additive kernels via explicit feature maps” A. Vedaldi and A. Zisserman. Pattern Analysis and Machine Intelligence, 2011.

fit(X, y=None)[source]

Set the parameters

Parameters

X (array-like, shape (n_samples, n_features)) – Training data, where n_samples in the number of samples and n_features is the number of features.

Returns

self – Returns the transformer.

Return type

object

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
  • X (numpy array of shape [n_samples, n_features]) – Training set.

  • y (numpy array of shape [n_samples]) – Target values.

Returns

X_new – Transformed array.

Return type

numpy array of shape [n_samples, n_features_new]

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

mapping of string to any

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

Return type

self

transform(X)[source]

Apply approximate feature map to X.

Parameters

X ({array-like, sparse matrix}, shape = (n_samples, n_features)) –

Returns

X_new – Whether the return value is an array of sparse matrix depends on the type of the input X.

Return type

{array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps + 1))