pyrfm.random_feature.RandomFourier

class pyrfm.random_feature.RandomFourier(n_components=100, kernel='rbf', gamma='auto', use_offset=False, random_state=None)[source]

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Approximates feature map of the RBF kernel by Random Fourier Feature map.

Parameters
  • n_components (int (default=100)) – Number of Monte Carlo samples per original features. Equals the dimensionality of the computed (mapped) feature space.

  • kernel (str (default="rbf")) – Kernel to be approximated. Now only “rbf” can be used.

  • gamma (float or str (default="auto")) – Parameter for the RBF kernel.

  • use_offset (bool (default=False)) – If True, Z(x) = (cos(w_1x+b_1), cos(w_2x+b_2), … , cos(w_Dx+b_D), where w is random_weights and b is offset (D=n_components). If False, Z(x) = (cos(w_1x), …, cos(w_{D/2}x), sin(w_1x), …, sin(w_{D/2}x)).

  • random_state (int, RandomState instance or None, optional (default=None)) – If int, random_state is the seed used by the random number generator; If np.RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

random_weights_

The sampled basis.

Type

array, shape (n_features, n_components) (use_offset=True) or (n_features, n_components/2) (otherwise)

random_offset_

The sampled offset vector. If use_offset=False, random_offset_=None.

Type

array or None, shape (n_components, )

References

[1] Random Features for Large-Scale Kernel Machines. Ali Rahimi and Ben Recht. In NIPS 2007. (https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf)

fit(X, y=None)[source]

Generate random weights according to n_features.

Parameters

X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Training data, where n_samples is the number of samples and n_features is the number of features.

Returns

self – Returns the transformer.

Return type

object

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
  • X (numpy array of shape [n_samples, n_features]) – Training set.

  • y (numpy array of shape [n_samples]) – Target values.

Returns

X_new – Transformed array.

Return type

numpy array of shape [n_samples, n_features_new]

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

mapping of string to any

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

Return type

self

transform(X)[source]

Apply the approximate feature map to X.

Parameters

X ({array-like, sparse matrix}, shape (n_samples, n_features)) – New data, where n_samples is the number of samples and n_features is the number of features.

Returns

X_new

Return type

array-like, shape (n_samples, n_components)