pyrfm.random_feature.SignedCirculantRandomKernel

class pyrfm.random_feature.SignedCirculantRandomKernel(n_components, kernel='anova', degree=2, random_state=None)[source]

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Approximates feature map of the ANOVA kernel by Signed Circulant Random Kernel map.

Parameters
  • n_components (int (default=100)) – Number of Monte Carlo samples per original features. Equals the dimensionality of the computed (mapped) feature space.

  • degree (int (default=2)) – Parameter of the ANOVA kernel.

  • random_state (int, RandomState instance or None, optional (default=None)) – If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

transformer_

Transformer object of signed circulant random matrix.

Type

SignedCirculantRandomMatrix

References

[1] Random Feature Maps for the Itemset Kernel. Kyohei Atarashi, Subhransu Maji, and Satoshi Oyama. In AAAI 2019. (https://www.aaai.org/ojs/index.php/AAAI/article/view/4188)

fit(X, y=None)[source]

Generate random weights according to n_features.

Parameters

X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Training data, where n_samples is the number of samples and n_features is the number of features.

Returns

self – Returns the transformer.

Return type

object

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
  • X (numpy array of shape [n_samples, n_features]) – Training set.

  • y (numpy array of shape [n_samples]) – Target values.

Returns

X_new – Transformed array.

Return type

numpy array of shape [n_samples, n_features_new]

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

mapping of string to any

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

Return type

self

transform(X)[source]

Apply the approximate feature map to X.

Parameters

X ({array-like, sparse matrix}, shape (n_samples, n_features)) – New data, where n_samples is the number of samples and n_features is the number of features.

Returns

X_new

Return type

array-like, shape (n_samples, n_components)