pyrfm.random_feature.SubfeatureRandomKernel

class pyrfm.random_feature.SubfeatureRandomKernel(n_components=100, n_sub_features=5, kernel='anova', degree=2, distribution='rademacher', dense_output=False, random_state=None)[source]

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Approximates feature map of the ANOVA/all-subsets kernel by Subfeature Random Kernel Feature map.

Parameters
  • n_components (int (default=100)) – Number of Monte Carlo samples per original features. Equals the dimensionality of the computed (mapped) feature space.

  • n_sub_features (int (default=5)) – Number of subfeatures.

  • kernel (str (default="anova")) – Kernel to be approximated. “anova”, “anova_cython”, “all-subsets”, “dot”, or “pairwise” can be used.

  • degree (int (default=2)) – Parameter of the ANOVA kernel.

  • distribution (str, (default="rademacher")) – Distribution for random_weights_. “rademacher”, “gaussian”, “laplace”, “uniform”, or “sparse_rademacher” can be used.

  • dense_output (bool (default=False)) – Whether randomized feature matrix is dense or sparse. For kernel=’anova’, if dense_output = False, distribution=’sparse_rademacher’, and X is sparse matrix, output random feature matrix will become sparse matrix. For kernel=’anova_cython’, if dense_output=False, output random feature matrix will become sparse matrix.

  • random_state (int, RandomState instance or None, optional (default=None)) – If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

random_weights_

The sampled basis.

Type

csr_matrix, shape (n_features, n_components)

References

[1] Sparse Random Feature Maps for the Item-multiset Kernel. Kyohei Atarashi, Satoshi Oyama, and Masahito Kurihara.

fit(X, y=None)[source]

Generate random weights according to n_features.

Parameters

X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Training data, where n_samples is the number of samples and n_features is the number of features.

Returns

self – Returns the transformer.

Return type

object

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
  • X (numpy array of shape [n_samples, n_features]) – Training set.

  • y (numpy array of shape [n_samples]) – Target values.

Returns

X_new – Transformed array.

Return type

numpy array of shape [n_samples, n_features_new]

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

mapping of string to any

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

Return type

self

transform(X)[source]

Apply the approximate feature map to X.

Parameters

X ({array-like, sparse matrix}, shape (n_samples, n_features)) – New data, where n_samples is the number of samples and n_features is the number of features.

Returns

X_new

Return type

array-like, shape (n_samples, n_components)